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Hippocampal-neocortical interactions are key to the rapid formation of novel associative memories in the
hippocampus and consolidation to long term storage sites in the neocortex. We investigated the role of network
correlates during information processing in hippocampal-cortical networks. We found that changes in the
intrinsic network dynamics due to the formation of structural network heterogeneities alone act as a dynamical
and regulatory mechanism for stimulus novelty and familiarity detection, thereby controlling memory man-
agement in the context of memory consolidation. This network dynamic, coupled with an anatomically estab-
lished feedback between the hippocampus and the neocortex, recovered heretofore unexplained properties of
neural activity patterns during memory management tasks which we observed during sleep in multiunit re-
cordings from behaving animals. Our simple dynamical mechanism shows an experimentally matched pro-
gressive shift of memory activation from the hippocampus to the neocortex and thus provides the means to
achieve an autonomous off-line progression of memory consolidation.
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I. INTRODUCTION

The memory formation process is founded upon synaptic
reorganization and modification regulated by neural activity.
When associative memories are first formed, cortical sensory
areas which project to the hippocampal associative network
activate the hippocampus and rapidly �within seconds� form
a new network of synaptic weights encoding that memory.
Over the span of days and weeks, rapidly formed novel
memory networks in the hippocampus are consolidated to
the cortex in a time- and activity-dependent fashion �1–3�,
eventually allowing memories to be independent of the hip-
pocampus altogether �4�. Recent studies �5� have shown that
storage and recall of spatial memory can occur indepen-
dently of the hippocampus once schemas have been formed.
Moreover, studies investigating brain metabolism and
activity-related genes in mice suggest the decreasing impor-
tance of the hippocampus as time passes after learning and
the increasing importance of several cortical regions �6�.
These and other findings �7� suggest that the hippocampus is
a general-purpose learner of new facts and events, both spa-
tial and nonspatial �8�, but that the cortex handles long-term
storage of memory. Electrophysiological �2,9–11� and ge-
netic �12� studies have combined with behavioral and neuro-
logical case studies �13,14� to build a coherent cellular and
behavioral theory of how the consolidation process occurs
offline �e.g., during sleep� through the reactivation of pat-
terns of neuronal activity observed during awake learning
�3,15–17�.

From a dynamical perspective it is generally assumed that
an enhanced spiking activity in the form of persistent rever-
beration for several seconds is the neural correlate of work-
ing memory �18–20�. The formation of these persistent ac-
tivity patterns has been studied extensively �21–23�. Some of
this work concentrated on investigating which intrinsic neu-
ronal properties can support such activity patterns �24,25�,
while others focused on defining the exact activity matrix
that would support attractors exhibiting localized, memory-
specific, persistent activity �26,27�. We have shown recently
that selective persistent activity during reactivation is an in-
trinsic property of an inhomogeneous dynamic memory
structure �28� and is due to recurrent excitation supported by
the networks with small-world �SW� topology �29�. Biologi-
cally, such heterogeneities are shown to exist �30�. Moreover,
we showed that the network can regulate the stability of the
persistent activity regime through change of global param-
eter, namely excitation. This allows the networks to undergo
a seamless transition between activity regimes.

It remains unclear, however, what the dynamical under-
pinnings of time-dependent memory transfer from the hip-
pocampus to the cortex are and how this dynamics is modu-
lated by stimulus novelty. Experimental work has shown that
the reactivation of a given experience during sleep is greatest
when the experience is novel and diminishes with increased
exposure �2,31�. Moreover, hippocampal recordings indicate
that there is a significant phase shift of neural activity with
respect to the hippocampal theta rhythm during the consoli-
dation process �2�, which could indicate a difference in input
drives through the two hippocampal excitatory input path-
ways as consolidation progresses �3�, as the firing of neurons
in the hippocampal subfield CA1 switches from being*michalz@umich.edu
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aligned with the peaks of hippocampal theta oscillation to
being aligned with the peaks of cortical theta rhythm. How-
ever, basic questions remain concerning �i� how the stimulus
novelty is assessed from changes in localized activity pat-
terns, �ii� how these changes are related to structural network
modifications, �iii� how the hippocampal-cortical interaction
regulates memory storage and erasure within hippocampus,
and finally �iv� how all these processes come together to
generate the experimentally observed, complex, and novelty
dependent memory management scheme.

Here we show that this phenomenon can be easily ex-
plained through generic modifications of network structure
which in turn evokes dynamical changes in network re-
sponse. Namely, our results indicate that the dynamic forma-
tion of localized network inhomogeneities, coupled with ba-
sic anatomy of hippocampal-cortical structure, can underlie
both novelty detection within hippocampal and cortical net-
works, as well as memory management processes based on
this novelty assessment. To be able to concentrate solely on
the structural network underpinnings of the observed dynam-
ics, we use integrate-and-fire neurons; however, the results
apply to biologically detailed neuronal models.

In order to more closely examine the network structural
and dynamical underpinnings of these phenomena, we
present each component of our model separately and discuss
their implications on the novelty detection and the memory
management. Both the hippocampus and the cortex were
each modeled as a reduced assembly of excitatory and in-
hibitory networks �Fig. 1�b�� having periodic small-world to-
pology per the Watts-Strogatz formulation �32�. This general
topology was found to be present in local and global brain
networks �33,34�. Dynamic small-world topology allows for
simultaneous local propagation of activity as well as long-
range re-injection of current, promoting formation of “on”
states of persistent activity �35�.

First, we show that a relatively small increase of connec-
tivity in a discrete �i.e., well-defined� network region can
play two distinctly different roles, depending on the network
dynamical regime. When the network is in the low excitation
regime, the changes of local network response to incoming
sensory stimuli can act as a familiarity or novelty detection
mechanism. However, when the global network excitation is
increased, the same region will exhibit a persistent self-
activation in the absence of external input. Our results indi-
cate that the evolution of these two dynamical states corre-
spond to observed neurobiological responses to a
presentation of increasingly familiar stimulus during animal
wake state and to memory reactivation experienced during
sleep, respectively.

Further, we show that structural network inhomogeneities
provide at the same time a dynamical mechanism of intranet-
work novelty detection and internetwork signaling of the
level of discrete memory consolidation within the cortical
network. This last mechanism subsequently provides a self-
regulated means for the hippocampus to clear already con-
solidated memory traces. When implemented in conjunction
with a simple learning rule, as well as the assumption of fast
plasticity in the hippocampus coupled with slow plasticity in
the cortex, we can reproduce complex memory management
processes similar to that observed in behavioral data.

II. MODEL STRUCTURE AND METHODS

A. Intrahippocampal-cortical network

The two brain structures were composed of a population
of 500 excitatory neurons coupled with a smaller population
of 100 inhibitory neurons. The network size ratios and con-
nection densities used were chosen to grossly reflect biologi-
cal distributions and connectivity patterns in the hippocam-
pus �Fig. 1�a��; however, these parameters are easily
modifiable without loss of observed dynamical response.

We used leaky-integrate-and-fire neurons given by

�m

dVi/e
j

dt
= − � jVi/e

j + Ii/e + �
k

wjkIsyn
k �1�

to represent the reduced dynamics of the network elements.
The i /e denotes either an inhibitory or excitatory neuron; Vi/e

j

is the membrane voltage of the jth neuron; � j is the mem-
brane leak rate constant randomly distributed such that � j
� �1,1.3�; �m=30 ms is the membrane time constant; Isyn

k is
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FIG. 1. �Color online� Diagrams of network structure. �a� Cir-
cuit diagram of anatomical connectivity between hippocampal and
cortical structures. Entorhinal cortex layers II, III, and IV–VI
project through the perforant path �PP� to the dentate gyrus �DG�
and CA3, through the temporoammonic �TA� path to the subiculum
�sub� and CA1, and from the CA1 and sub to the deeper layers of
the entorhinal cortex, respectively. MF=mossy fibers and SC
=shaffer’s collaterals. �b� Diagram of model used in simulations.
Single network �hippocampus or cortex�: the network is composed
of a larger population of excitatory neurons and a smaller popula-
tion of inhibitory neurons. Both inhibitory and excitatory networks
are small-world networks having periodic boundary conditions.
Feedback between hippocampus and cortex: the excitatory hippoc-
ampal neurons locally innervate the excitatory cortical network
�e.g., the entorhinal cortex�. The cortical excitatory network sup-
presses the hippocampal excitatory network through random inhibi-
tory pathways.
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the incoming current to the jth neuron from the kth neuron;
and wjk is the connection strength between neurons j and k.
For the global excitatory network the local connections are
established between cells such that the relative distance from
one to another lies within the radius Re=5, pg

e =0.15 is the
rewiring parameter defining the fraction of the number of
local connections to the number of random, long-range ones,
and the connections are of strength wex=2. Similarly, the
global inhibitory interneuron subnetwork has Ri=1, pg

i =1,
and win=10, forming a random graph network. Every inhibi-
tory cell receives input from nei=5 neighboring excitatory
neurons with strength wei=4, and every excitatory neuron
receives input from nie=10 random inhibitory ones with
strength wie=2. Locality and relative distance were deter-
mined by considering a one-dimensional lattice with periodic
boundary conditions, done for graph visualization purposes.
Synaptic strengths were chosen to balance number of incom-
ing connections so that total possible input to all cells re-
mains the same. The external current Ii/e is uniform over the
entire inhibitory or excitatory network and functions as a
global modulatory mechanism �control parameter� that me-
diates response transitions from low-frequency random ac-
tivity, to spontaneous activation of discrete network regions,
and finally to global bursting. This network architecture pro-
motes global inhibition driven by focal excitation that creates
selective, persistent reactivation patterns. For a detailed de-
scription, refer to �28�.

When the membrane potential of a given cell assumes a
maximum value of Vreset=1, the neuron emits an action po-
tential, its membrane potential is reset to Vrest=0, and the
neuron enters a refractory period for �refr=10 ms. The syn-
aptic current emitted by spiking neuron �k� is of the form

Isyn
k �t� = exp�− �t − tspike

k �
�s

� − exp�− �t − tspike
k �

� f
� , �2�

where �t− tspike
k � is the time since neuron k last spiked, �s

=1.5 ms is the slow time constant, and � f =0.15 ms is the fast
time constant. Aside from the deterministic input drive re-
ceived from other cells, all neurons have a pfire=10−3 prob-
ability of firing spontaneously at any time step, defined as
0.5 ms.

In this reduced model, the network inhomogeneities are
built into the excitatory subnetworks of both the hippocam-
pal network and the cortical network by adding random con-
nections to distinct nonoverlapping subgroups of excitatory
neurons, i.e., neuron IDs 1–100, 101–200, 201–300, 301–
400, and 401–500. The additional connections increase the
density of interconnectivity within these regions beyond the
average global connectivity level, allowing subgroups of
neurons to recurrently innervate and effectively increasing
regional excitability. These subgroups can be thought of as
memory structures formed through long term potentiation
�LTP� processes which are known to occur readily during
exploration of a novel environment �36–39�.

B. Interhippocampal-cortical feedback

In the brain, the cortex and hippocampus are connected
via two main input pathways: �i� the perforant path �PP�

from layer II of the entorhinal cortex to the dentate gyrus, to
CA3, and then to CA1 �Fig. 1�a� and modeled as “input” in
Fig. 1�b��; and �ii� the TA pathway directly from layer III of
the entorhinal cortex to the inhibitory interneurons in the
lacunosum-moleculare layer of the CA1 region and on to the
subiculum �represented as higher association cortex excita-
tory to hippocampus inhibitory cell connections in Fig. 1�b��
�40�. These two PP and TA input pathways function sepa-
rately to encode novel memories and serve as a consolidation
index for familiar memories, respectively �41�. It is the
slowly building familiarity index of the TA pathway that is
the first step in memory consolidation which is modeled
herein. To model this neurophysiology, the model network
hippocampus and cortex were coupled through localized ex-
citatory connections from the hippocampus to the cortex, and
also with diffuse feedback inhibition from the cortex to the
hippocampus �Fig. 1�b��. This connectivity grossly repro-
duces the anatomic connectivity �Fig. 1�a�� between the two
structures �40�. The one-to-one excitatory mapping from the
hippocampus to the cortex is instituted for visualization pur-
poses only; the qualitative results of this model would re-
main the same as long as the cortical structures, representing
the long-term consolidated memories, can effectively and se-
lectively affect hippocampal memory activation or reactiva-
tion.

C. Activity-dependent synaptic modifications

In the last stage of our simulations, we introduce self-
regulated formation of new connections within the excitatory
networks to show the progression of sequential memory
management: rapid memory formation in the hippocampus,
its reactivation in hippocampus and consolidation in the cor-
tex, and subsequent erasure in the hippocampus. Hippocam-
pal and cortical excitatory subnetworks are allowed to un-
dergo synaptic modification based on spiking activity of
these cells. Subnetworks are of small-world topology, with a
local radius of Re=10 and a rewiring parameter pg

e =0.15, and
are composed of 50% nonmodifiable, homogeneous, active
connections with constant weight wex=2 as well as 50%
modifiable, initially silent synapses, which are connections
initially with weight 0 but can modulate their strength be-
tween 0 and wex=2 as a function of neuronal activity �42�.

The changes in synaptic strength are implemented based
on a simplified neurobiological rule of spike-timing depen-
dent plasticity �43–46�. The synapse strength is incremen-
tally increased when the pre- and postsynaptic neurons fire
together within a set interspike interval �ISI� of TL=7.5 ms,
and, conversely, synaptic efficacy in the modifiable group is
decreased when the two cells do not activate congruously,
i.e., their ISI is above the set threshold TF=15 ms:

�w
jk
* =�

wex

�learn
h/c if tj − tk � TL;

−
wex

� forget
h/c if tj − tk � TF;

0 if TL � tj − tk � TF.
	 �3�

The w
jk
* indicates the weight of modifiable synapses between

neurons j and k, wex=2 is the strength of nonmodifiable syn-
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apses in the excitatory network, tj − tk is the ISI between neu-
rons j and k, and �learn

h/c and � forget
h/c are the time constants of

learning and forgetting in the networks, where h /c denotes
the hippocampal and cortical network, respectively. The time
constants of learning and forgetting are much larger in the
cortical network, reflecting slower learning �LTP� in the cor-
tex �47–49�. We have used �learn

h =7.5 ms, � forget
h =10 ms,

�learn
c =25 ms, and � forget

c =200 ms.
In this simplified model we concentrate on memory for-

mation only within hippocampal and cortical structures. In
the brain, LTP occurs both within the hippocampus, within
the cortex, and between the two structures during learning.
LTP occurs readily in the trisynaptic pathway from layer II of
the entorhinal cortex �EC� to the dentate gyrus �DG�. LTP is
also easily produced in the Schaffer collateral �SC� fibers
from CA3 to CA1 as noted in vitro and in vivo �41,50�. LTP
in the direct temporoammonic �TA� inputs to CA1 have not
been well described; indeed it is only recently that attention
has been paid to this input pathway in models of hippocam-
pal function, mostly in reference to memory consolidation as
we are considering here. As was noted earlier, LTP in the TA
pathway is more difficult to induce and would therefore
probably occur more slowly than LTP in the trisynaptic path-
way �47,49�.

D. Experimental procedures for biological
recording and data analysis

The experimental procedures are thoroughly described in
�51�. Briefly, rats were anesthetized and implanted with a
14-tetrode drive above the hippocampus CA1 region in the
brain. After surgical recovery, rats were food restricted to
maintain 80–95 % of their free feeding weight, and were
trained to run on a raised rectangular track for food morsel
rewards placed in food cups around the edges of the track.
Rats ran laps on this same track for 45 min each day to
familiarize them with the environment, procedure, and re-
cording setup.

REM sleep was characterized by lack of movement and
sustained large theta �5–10 Hz� frequencies in the field po-
tential following at least 3 min of non-REM sleep. Cell
spike, field potential, and position data were recorded while
the rat traversed the familiar training track for 20 min, then
traversed a similar track located in a previously hidden area
of the room for another 20 min, then returned for a final
20 min run on the familiar track. The same procedure of
familiar-novel-familiar maze running followed by sleep re-
cording was followed every day for a week while the ini-
tially novel maze became familiar to the animal.

The relative amplitude of the spike peak and trough, and
other wave-form characteristics were used to identify nearly
100 recorded pyramidal cells and interneurons from the CA1
cell body layer. The spike times of each cell were then listed
and compared with the position of the animal at the time of
firing, the state of the animal, and the phase of the field
potential filtered for theta. Thirty-one of the recorded CA1
pyramidal cells were selected for further analysis because
they showed consistent place-specific firing �place fields� on
either the familiar maze only �n=12�, or formed a stable new

place field on the novel maze �n=19�. The firing rate of the
familiar and novel place cells during the exploration phase
and during the subsequent 4-h sleep period was calculated.
The reactivation rate and theta pattern of cell firing during
REM sleep was compared with the activity rates and patterns
of the same cells during the prior exploration period. Theta
phase and firing rate changes during running and REM sleep
were first reported in Poe et al. �52�.

III. RESULTS

We show below that formation of structural network het-
erogeneities defined as local variations of synaptic density
can lead to dramatic changes in network dynamics which
may underlie stimulus novelty detection and regulate
memory management between the hippocampus and the neo-
cortex. We ultimately show that this simple mechanism
modulating hippocampal activation through cortical feed-
back reproduces the experimental data presented and, further,
replicates the full process of hippocampal memory manage-
ment �i.e., hippocampal storage→hippocampal reactivation
→cortical storage→hippocampal deactivation�. For clarity,
in the sections below, we discuss each dynamical component
of the phenomena separately.

A. Single network mechanism can underlie novelty
detection and memory reactivation

We have shown earlier �28� that network heterogeneity
may underlie selective network reactivation. Here we want to
show that the structural network modifications may play a
twofold role during network dynamics. Random addition of
relatively few synapses �1–2 % of total possible connections�
to a selected network region can dramatically change activity
response of this region to stimulation when the network is in
its low global excitation state �i.e., low Ie�, and at the same
time it can lead to formation of persistent activity state
within the same region when the network is in its high global
excitation state �i.e., high Ie�.

To illustrate these effects we first measured network re-
sponses to a focal external drive �Figs. 2�a�–2�c��. The net-
work shows preferential activation of the region with added
connections directly related to the magnitude of the struc-
tural network heterogeneity. Since the formation of the het-
erogeneity is the outcome of LTP processes incurred during
learning �36–39�, the changes in the intrinsic response of the
network to the stimulation can be directly linked to the nov-
elty or familiarity of the presented stimulus.

Furthermore, as we have shown before, these regions of
network inhomogeneities can be spontaneously activated
when network’s global excitation level �Ie� is increased. Fig-
ures 2�d�–2�f� depict examples of spontaneous reactivation
as a function of connectivity density within the heteroge-
neous region. One can observe clear reactivation exemplified
in the persistent activation of the neurons within the hetero-
geneous network region. The reactivation itself is due to re-
ciprocal feedback activity which is mediated by the fact that
SW topology provides a structurally random yet stable re-
injection mechanism supporting prolonged activation of neu-
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rons in spite of their refractory time �29�. The discrete local-
ization of the reactivating region is, on the other hand, due to
lowered threshold within the inhomogeneity for such dynam-
ics to occur as well as increased inhibition spreading ran-
domly to other network regions.

Thus we show that network structural inhomogeneity pro-
vides a dynamical mechanism mediating and modulating lo-
cal, discrete network responses to stimulation, while also al-
lowing self-reactivation under conditions of increased global
excitation of the network. Here, the network dynamics can
be viewed during wake behavior as an unstable attractor that
becomes activated only by stimuli of appropriate character-
istics, and yet during offline consolidation becomes a stable
attractor which can activate spontaneously.

B. Modulation of hippocampal activation
and reactivation by cortical feedback

Having established a common mechanism modulating
both network response to stimulus based on its novelty as
well as spontaneous reactivation during offline processing,
we will proceed to apply this concept within an experimen-
tally established framework of hippocampal and cortical in-
teractions. The underlying assumption that we are making is
that progressive storage �i.e., memory formation� of the pre-
sented stimulus is achieved by the formation of network in-
homogeneity first in the hippocampus �i.e., fast, short-term
storage� and then in the cortex �i.e., slower, long-term stor-
age�. In order to highlight the effects that cortical storage has
on hippocampal activation and eliminate transient effects, we
disallow synaptic modifications �i.e., learning� and examine
the network dynamics at various static points of cortical
memory storage.

We investigated the changes in cortical and hippocampal
activation patterns as a function of the degree of regional
inhomogeneity in the cortex �representing long-term memory
storage� when the external stimulus is present. The hippoc-
ampal network �Fig. 3� had a single structural heterogeneity,
located at neuron IDs 300–400 and created by the addition of
400 random connections within this region, and was driven
by focal external stimulation applied as an additional input
current �Istim=4� driving six cells �IDs 315–320�. One can
observe that when the cortex was homogeneous, with no
added connections, the stimulated region in the hippocampus
was highly activated �Fig. 3�a��. However, in the presence of
cortical structural inhomogeneity, hippocampal activation
was attenuated through diffuse inhibitory feedback stemming
from cortical feedback excitation of hippocampal interneu-
rons �Figs. 1�a�, 1�b�, and 3�b��. In general, we see that hip-
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FIG. 2. Local addition of new connections changes the local
response properties in the network during input stimulation and,
further, produces self-activation in the absence of input when global
network excitation is raised. �a� Activation of a network region,
measured as a mean firing frequency of neurons in the subnetwork
�neuron IDs 300–400�, in response to stimulation of six cells �neu-
ron IDs 315–320; global excitation Ie=0.6; stimulation current
Istim=0.7� as a function of number of added connections to the
subnetwork. Activation is averaged over 20 runs and over time.
Inset: sample time course of activation for four different connectiv-
ity densities �dashed line denotes onset of the stimulation�. �b�, �c�
Sample raster plots of the network response during alternating
stimulation to illustrate locality of response; neurons 315–320 are
stimulated between the dashed line and first dotted line, neurons
115–120 between the first dotted and second dotted lines, and neu-
rons 315–320 are finally stimulated between second dotted line and
end of run. �b� No heterogeneities are present. �c� N=400 connec-
tions are added to the neuron IDs 300–400 region of the network.
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pocampal activation systematically decreased as additional
connections were added to the cortex, while cortical activity
increased at the same time �Fig. 3�c��. Therefore, the level of
long-term memory consolidation in the cortex is able to con-
trol activation of the same memory in the hippocampus,
serving as a novelty detection mechanism which can be uti-
lized by the hippocampus in the consolidation process.

C. Cortical modulation of hippocampal memory reactivation

As noted before, it is thought that memory reactivation
observed during sleep plays an important role in long-term
memory storage as a possible memory replay mechanism
mediating memory consolidation into the cortex. In such a
system, it is important that consolidation, and thus reactiva-
tion, is regulated by stimulus novelty �i.e., overconsolidation
of a given memory may lead to disruption of other memo-
ries, while lack of consolidation of novel memory will in-
hibit its storage�. We postulate that, toward this end, the cor-
tex has a novelty-dependent and memory-specific regulation
of memory reactivation. We will show below that this
mechanism becomes an intrinsic property within the mod-
eled cortical-hippocampal interactions.

1. Simulation results

We demonstrate this mechanism in our hippocampal-
cortical network, again in the absence of learning in order to
eliminate transient, time-dependent effects. Three network
regional inhomogeneities �neuron IDs 0–100, 200–300, 400–
500� representing memory structures were created in the hip-
pocampal network and kept unchanged during the simula-
tion. At the same time, the cortical network was initially set
to be homogeneous, and then new connections were progres-
sively added to a region matching one of the hippocampal
network heterogeneities �neuron IDs 200–300�, to represent
the progressive consolidation of that cortical memory. Figure
4�a� depicts the regional hippocampal activity in the three
network regions of interest, normalized to their activity when
there are no additional connections present in the cortex. One
can observe a significant decrease of reactivation of the hip-
pocampal network region �Fig. 4�a�; “familiar” line�, linked
to the cortical region where structural inhomogeneity was
progressively formed. The reactivation ratios of the other
two hippocampal regions remained virtually unchanged �Fig.
4�a�; “novel 1” and “novel 2”�. This indicates that the cortex
can selectively deactivate reactivation of a particular network
region, representing a single familiar memory, within the
hippocampus while keeping the reactivation of others virtu-
ally unchanged. Figures 4�b� and 4�c� depict an example of
localized hippocampal deactivation by the cortex. As soon as
the familiar hippocampal region �IDs 200–300� started to
reactivate, the linked cortical region immediately activated,
during which activity of the whole hippocampus was inhib-
ited. After the reactivation in the familiar memory region
was abolished in the hippocampus, the cortex subsequently
deactivated and other hippocampal regions �representing
novel, as yet cortically unconsolidated memory� were able to
again reactivate.

2. Experimental confirmation

To validate our results, we compared them with experi-
mental findings �51�. Here we concentrate on two basic as-
pects: the progressive cortical involvement in hippocampal
processing during memory consolidation, and changes in the
offline, autonomous �i.e., not stimulus driven� hippocampal
processing �i.e., reactivation�.

We measure the progressive cortical involvement in hip-
pocampal processing by monitoring the phase shift in firing
of hippocampal neurons, in relation to field potential theta
oscillation phase. The phases of theta oscillations in the hip-
pocampus and in the cortex are shifted with respect to each
other by 180° �3,53�. In addition, according to previous re-
search �3,51,52�, the firing pattern will be aligned with the
field potential theta oscillation phase of the dominant input
structure �i.e., hippocampal or cortical�. The activity of hip-
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FIG. 4. Selective autonomous memory reactivation in the
hippocampal-cortical structure—simulations and experimental data.
The hippocampus has three regions of network inhomogeneities
imbedded �IDs 1–100, 200–300, 400–500�. One memory structure
�IDs 200–300� is stored in the corresponding region in the cortex.
�a� Average reactivation activity of familiar �neuron IDs 200–300�
vs. novel �neuron IDs 1–100 and 400–500� memories as a function
of additional cortical connections. The hippocampal heterogeneity,
which has progressively stronger representation in the cortex, reac-
tivates significantly less. Activity was measured by normalizing to-
tal spike counts within a memory region for the total duration of the
run to total spike counts for the homogenous cortex run. Sample
raster plots for �b� hippocampus and �c� cortex. �d�, �e� Experimen-
tal data: �d� Phase locking of hippocampal neurons activity to peak
of cortical theta oscillations as a function of days of exposure to the
stimulus �i.e., stimulus novelty�. Solid black line �“track”� denotes
phase locking to CA1 layer theta peaks during active exploration;
dashed gray line denotes the same phase relation observed during
REM sleep reactivation �“REM”�. The neural firing becomes pro-
gressively in-phase with peak theta oscillation observed at distal
cortical TA inputs. �e� frequency of hippocampal activity in novel
and familiar environments during exploration �left� and sleep reac-
tivation �right�.
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pocampal neurons in relation to field potential theta oscilla-
tion phase over the time course of memory consolidation is
shown in Fig. 4�d�. The strong progressive shift in the activ-
ity of hippocampal neurons to fire in the trough of the hip-
pocampal theta cycle, i.e., in phase with theta at the site of
direct cortical inputs through the TA pathway, indicates that
as the reactivated memory becomes increasing familiar, the
cortex plays a progressively larger role in the hippocampal
reactivation pattern. This supports directly our results which
show that as familiarity is increased, the cortical involvement
in hippocampal firing dynamics also increases.

We measure the progressive change in hippocampal of-
fline processing by monitoring the spiking frequency of the
reactivating place cells. Once the consolidated cortical TA
pathway began to directly drive hippocampal reactivation
�Fig. 4�d��, the spiking frequency of neurons encoding the
�cortically� familiar environment decreased significantly
�Fig. 4�e�, right�, just as predicted by the simulations. The
switch in both theta phase and frequency of firing during
reactivation can be explained by the consolidated cortical
memory network effectively suppressing hippocampal CA1
reactivation, possibly through projections to the opioid-
sensitive inhibitory neurons �47,54,55�, just as we observed
in our simulations.

D. Cortical modulation of hippocampal
memory management sequence

The hippocampus, being a short-term memory storage lo-
cation �1�, is thought to perform three primary memory man-
agement tasks: store novel memory traces, reactivate these
traces during quiet waking and sleep for consolidation to the
cortex, and lastly erase them from itself to prevent saturation.
We posit that these complex memory management processes
are autonomously controlled on the basis of their familiarity.
As the last part of this paper, we present the full model, with
synaptic plasticity �i.e., learning dynamics� and show that
localized cortical activation together with the modeled
hippocampal-cortical feedback can act as a dynamical, au-
tonomous hippocampal memory management mechanism.
Self-regulation of this process within the hippocampal-
cortical structure has the required and experimentally estab-
lished phases �i.e., initial hippocampal learning during stimu-
lus exposure, reactivation when the stimulus is not present,
inhibition of reactivation when cortical heterogeneity is
formed, and subsequent deactivation of the memory through
deconstruction of the hippocampal heterogeneity�. To do so,
we introduce self-regulating synaptic modifications. As de-
scribed in the Methods section, in this set of simulations the
network is composed of both fixed synapses and modifiable
ones. The modifiable synapses are initially silent �42� and
become selectively active, driven by an activity dependent
synaptic modification process �Eq. �3��.

During the simulation, a subset of neurons �IDs 200–300�
in the hippocampal excitatory network were injected with
external current at times denoted by the shaded time seg-
ments on the hippocampus raster plot in Fig. 5�a� to simulate
a sensory experience, and both hippocampal and cortical net-
works were allowed to modify their silent synapses starting

at 1.5 s �dashed vertical line�. The external stimulation
coupled with synaptic plasticity allowed for rapid formation
of network inhomogeneity in the hippocampus, while synap-
tic modifications happened on a much slower time scale in
the cortex �Fig. 5�c��. When the external stimulation was
stopped, the local structural changes created in the hippoc-
ampus drove its continued reactivation, allowing for further
activation and structural modifications in the cortex. At a
critical point, the cortical heterogeneity became large enough
that its activity blocked the reactivation in the hippocampus
through the interneuronal feedback �Figs. 5�a� and 5�b��. As
the hippocampus shut down, its inhomogeneity started to
clear out due to its ability to quickly depotentiate the syn-
apses, while the cortex maintained its memory structure even
in the absence of stimulation or activation.

Anatomically, this depotentiation occurs through TA in-
puts to interneurons which have spike-blocking activity �47�
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FIG. 5. Memory management through hippocampal-cortical
feedback. Raster plots of activity in �a� hippocampus and �b� cortex.
The hippocampus is presented with the stimulus �represented by
shaded region� in neurons 200–300, immediately undergoing fast,
local synaptic formation in the stimulated region. Concurrently, cor-
tical activity driven by the hippocampus induces slow synaptic
modifications in the cortex. Dashed vertical line denotes start of
learning for both networks. Formation of local connections in the
hippocampus allows spontaneous reactivation of the network even
when the external stimulation is terminated. Activation of the cortex
eventually inhibits reactivation in the hippocampus and the hippoc-
ampal network begins the process of forgetting the stored memory.
Upon subsequent stimulation of this same region in the hippocam-
pus �second shaded portion, starting at 11.5 s�, the cortex immedi-
ately activates and further learns. When the stimulus is again
stopped, reactivation of hippocampal region is much shorter due to
stronger activation in and inhibitory feedback from the cortex. �c�
Average synaptic weight of modifiable synapses is normalized to
maximum possible value, wex=2. �d�, �e� Histograms of spiking
frequency obtained from different time regions of the simulation
�denoted by the labeled black bars IS, IIS, IR, IIR� for �d� hippoc-
ampus and �e� cortex. IS labels the first stimulation time window,
corresponding to novel exploration �Fig. 4�e��; IIS labels the second
stimulation �familiar exploration�; IR labels the first reactivation
time window �novel reactivation�; IIR labels the second �familiar
reactivation�. All time windows are 1 s. The changes in frequency
response in the hippocampus reproduce accurately the experimental
data �Fig. 4�e��.
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and release depotentiation-enhancing peptides �55�. Concur-
rently, the hippocampus increases its sensitivity to the direct
TA cortical inputs �54�. Upon repeated stimulation to the
same hippocampal area �second shaded region in Fig. 5�a��,
we see that reactivation in the hippocampal network became
shorter as the memory became progressively more familiar
to the cortex and direct cortical inputs to the hippocampus
through the TA pathway became more active. Figures 5�d�
and 5�e� compare observed spike frequencies from the be-
havioral time points corresponding to the experimental data
�Fig. 4�d��. Here, one can observe a slight increase of the
hippocampal spike frequency during the second stimulation
period �data calculated from time period labeled “IIS”�. This
is due to the fact that the inhomogeneity was not completely
cleared from the hippocampus, and therefore the hippocam-
pal network activation due to the formation of network het-
erogeneity corresponding to this memory was stronger than
the simultaneous inhibition received from the cortical net-
work. At the same time the cortical feedback mediated dra-
matic shortening or abolition of reactivation when the exter-
nal stimulation ceased.

IV. DISCUSSION

In this paper we show that distributed network dynamics
modulated by local modifications in network structure can
play a pivotal role in complex processes of memory manage-
ment. Specifically, we have demonstrated that structural net-
work inhomogeneities created through local modifications of
network connectivity can act in two ways depending on the
dynamical regime: they effect differential activation of the
network in response to the external stimulus, and they can
mediate autonomous reactivation of selective network re-
gions. The former phase represents associative memory pro-
cesses during active exploration of the environment. We have
shown that differential activation during stimulation may
serve as a novelty or familiarity assessment of the incoming
stimulus in the cortical network, which in turn may facilitate
self-controlled memory management in the hippocampal-
cortical interaction. The latter phase indicates memory reac-
tivation observed during various stages of quiet waking and
sleep �1–3�. The transition from one phase to the other can be
self-regulated through adjustment of the global network ex-
citation. In the brain, such regulation is known to exist and is
controlled through neuromodulatory processes �56–58�.

By utilizing the structural network underpinnings of the
dynamical network response together with cortical feedback
we can reproduce the sequential memory management stages
that have been observed in the hippocampus. This mecha-
nism is built on several phenomena supported by experimen-
tal findings, which we have explored in this paper: discrete
activation and reactivation of heterogeneous structures
within hippocampal and cortical networks, cortical regula-
tion of linked hippocampal memory structures based on fa-
miliarity level, which acts as the basis for novelty discrimi-
nation among parallel and concurrent memories, and finally
spike-timing dependent plasticity of the hippocampus and
cortex which occur on different time scales. We simulate
hippocampal and cortical response to both novel and increas-

ingly familiar stimuli and show that, upon repeated exposure,
hippocampal reactivation of the memory is lessened due to
increased feedback from the cortical memory region.

We have compared the obtained results with the available
experimental data. Experimental findings show that the fre-
quency of reactivating neurons in the hippocampus coding
familiar stimuli is significantly lower than the reactivation
frequency while encoding novel stimuli. Furthermore, the
observed progressive theta phase shift in activation of hip-
pocampal CA1 neurons as a function of memory novelty
�from in-phase with the hippocampal theta rhythm to in-
phase with the theta peaks at the cortical input pathway�
indicates a progressive increase in cortical driving, which is
observed in our model. This is also consistent with recent
research which shows a temporal correlation between corti-
cal and hippocampal replay of consolidated memories, indi-
cating a strong interaction between the two structures during
sleep �59�. Neocortical up-down states have been shown to
be phase-locked to hippocampal interneurons �60�, indicating
that this temporal correlation is at least partly due to their
excitatory cortical drive, also in support of our model.

The reduced model presented here is not meant to faith-
fully reproduce every structural and dynamical aspect ob-
served experimentally but to act as a tool to elucidate the link
between structural network modifications and its dynamics
during associative network storage processes—in essence, to
highlight the role of network processes and dynamics in
memory formation. For the sake of visual simplicity, and as a
test of proof of principle, we implemented several artificial
aspects into our model, such as nonoverlapping, localized
memory structures. Further preliminary work shows, how-
ever, that the qualitative results presented in this paper do not
change by implementing distributed, overlapping memories.

We have also not implemented any underlying oscillatory
rhythms within our model cortex and hippocampus. The
comparison of our results with the phase locking observed in
the experimental data is only to highlight the increased role
of cortical input during progressing memory consolidation.
Furthermore, it is important to note that the cortical feedback
itself is excitatory but that, in our model, it targets only in-
hibitory interneurons of the hippocampal structure. Anatomi-
cally it is known that this excitatory feedback also targets the
pyramidal cells �40� and could consequently mediate the
phase locking observed in the data.

Finally, the increase in cortical firing rate after consolida-
tion that is predicted in our model �Fig. 5�e�� could also
be manifested as an increase in the functional connectivity
between the cortex and hippocampus via a strengthening
of the TA inputs to CA1. This synaptic weight modifica-
tion would have additional effect on the dynamics of
hippocampal-cortical interactions and the increase in firing
rates during reverberation. Thus whether slow increases in
cortical firing increases the TA inputs or LTP of the TA inputs
occurs slowly, the net effect on the network activity pattern
is the same; increased input strength to the hippocampal in-
hibitory cells would effectively shut down hippocampal ac-
tivity after consolidation, probably due to increased activa-
tion of the opioid sensitive interneurons in the distal stratum
lacunosum-moleculare �SLM� layers �47,54,55�. Indeed, the
firing rate of hippocampal reactivation is reduced in familiar
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memory networks �Fig. 4�e��, and that shutdown occurs pri-
marily at the phase of theta when the CA1 cells are most
depolarized and CA3 inputs should be most capable of caus-
ing CA1 cells to fire.

Clearly these simplifying assumptions do not fully cap-
ture the complexity of hippocampal-cortical processing, but
nevertheless are useful in illuminating possible network dy-
namical mechanisms mediating memory management as
well as opening interesting avenues of future research.
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